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Background and Objectives: Delayed cerebral ischemia (DCI) is the leading complication of 

subarachnoid hemorrhage (SAH). Because DCI was traditionally thought to be caused by large 

vessel vasospasm, transcranial Doppler ultrasounds (TCDs) have been the standard of care. 

Continuous EEG has emerged as a promising complementary monitoring modality and predicts 

increased DCI risk. Our objective was to determine whether combining EEG and TCD data 

improves prediction of DCI after SAH. We hypothesize that integrating these diagnostic 

modalities improves DCI prediction.  

Methods: We retrospectively assessed patients with moderate-severe SAH (2011-2015, 

Fisher=3-4 or Hunt-Hess=4-5) who had both prospective TCD and EEG acquisition during 

hospitalization. Middle cerebral artery (MCA) peak systolic velocities (PSV) and the presence or 

absence of epileptiform abnormalities (EA), defined as seizures, epileptiform discharges, and 

rhythmic/periodic activity, were recorded daily. Logistic regressions were used to identify 

significant covariates of EA and TCD to predict DCI. Group-Based Trajectory Modeling 

(GBTM) was used to account for changes over time by identifying distinct group trajectories of 

MCA PSV and EA associated with DCI risk.  

Results: We assessed 107 patients, and DCI developed in 56 (51.9%). Univariate predictors of 

DCI are presence of high-MCA velocity (PSV≥200cm/s, Se=27%, Sp=89%) and EA (Se=66%, 

Sp=62%) both on or before day 3. Two univariate GBTM trajectories of EA predicted DCI 

(Se=64%, Sp=62.75%). Logistic regression and GBTM models using both TCD and EEG 

monitoring performed better. The best logistic regression and GBTM models used both TCD and 

EEG data, Hunt-Hess score at admission, and aneurysm treatment as predictors of DCI (Logistic 

Regression: Se=90%, Sp=70%; GBTM: Se=89%, Sp=67%).  

Discussion: EEG and TCD biomarkers combined provide the best prediction of DCI. The 

conjunction of clinical variables with the timing of EA and high-MCA velocities improved 
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model performance. These results suggest that TCD and cEEG are promising complementary 

monitoring modalities for DCI prediction. Our model has potential to serve as a decision support 

tool in SAH management. 

Classification of Evidence: This study provides Class II evidence that combined TCD and EEG 

monitoring can identify delayed cerebral ischemia after subarachnoid hemorrhage. 

 

Introduction 

Delayed cerebral ischemia (DCI) is the leading complication of subarachnoid hemorrhage 

(SAH). Previously, it was believed that DCI is caused solely by large vessel vasospasm, and 

thus, transcranial doppler ultrasound (TCD) currently serves as the standard of care for DCI 

monitoring. Although TCD serves as a non-invasive, portable, bedside monitoring exam, it is 

done infrequently (at best 1-2 times per day), is operator dependent, can be limited by patient 

anatomy (poor temporal bone window), and can be affected by other physiologic parameters 

(such as heart rate and blood pressure). Additionally, we now know that vasospasm alone does 

not fully explain DCI1–3.   

Continuous EEG (cEEG) has emerged as a promising supplementary diagnostic tool for DCI 

prediction and addresses some limitations of TCD monitoring. CEEG is non-invasive and 

portable, and most importantly can provide several days of continuous data. Studies have 

demonstrated quantitative cEEG measures such as relative alpha variability and post-stimulation 

alpha/delta ratio4–6 and epileptiform abnormalities (EA)7,8 to be associated with DCI. There is 

also evidence that patients usually first exhibit cEEG changes prior to developing DCI and that 

EEG is more strongly associated with DCI than elevated TCD velocities8,9. TCD and cEEG offer 
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potentially synergistic information about DCI risk. Yet, the combined utility of TCD and cEEG 

data for DCI prediction has not been assessed. 

Here, we sought to address whether integrating TCD and cEEG measures can identify DCI after 

SAH. We hypothesize that combining TCD and cEEG parameters in a single model will improve 

DCI prediction compared to either modality alone. 

 

Methods 

Study Population 

We retrospectively evaluated cEEG, TCD, and electronic medical records from 107 moderate- to 

high-grade SAH patients from the Massachusetts General Hospital between September 2011 and 

January 2015. The inclusion criteria were: (1) age ≥18 years; (2) Moderate- to high-grade SAH 

(Hunt-Hess grade 4-5 or Fisher group 3-4); (3) non-traumatic SAH; (4) TCD data available; (5) 

cEEG lasting at least 24 hours and not discontinued more than 24 hours before diagnosed DCI 

events. We excluded patients who developed non-convulsive or convulsive status epilepticus due 

to confounding of EEG interpretation. We perform daily TCD monitoring as part of standard 

clinical care, and record peak systolic velocities (PSV) at the middle (MCA), anterior (ACA), 

and posterior (PCA) cerebral arteries. We performed cEEG monitoring as part of standard 

clinical care in all high-grade SAH patients. Monitoring typically began within 48 hours of 

admission and continued for ten days.  

Standard Protocol Approvals, Registrations, and Patient Consents 

For this retrospective analysis, we sought approval from the MGH institutional review board to 

conduct this study (IRB: 2013P001024). The IRB approved waiver of participant consent.  
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TCD  

We only looked at MCA PSV, as the sensitivity and specificity of ACA and PCA TCD values 

for predicting DCI are limited10 and were not consistently available in many patients. We defined 

“high-MCA velocity” as MCA PSV measurement ≥200cm/s. While this is a classic threshold for 

vasospasm11–13, we chose to use the term “high-MCA velocity” in this paper to denote arterial 

narrowing and avoid confusion, given “vasospasm” and “DCI” have been used interchangeably 

in the literature14–16.  

EEG recordings 

CEEG were recorded using conventional 10-20 scalp electrode placement. We defined 

epileptiform abnormalities (EAs) as seizures, epileptiform discharges (EDs), lateralized or 

generalized periodic discharges (LPDs and GPDs), and lateralized rhythmic delta activity 

(LRDA). The presence or absence of these abnormalities on each day, based on daily cEEG 

reports generated by fellowship-trained clinical neurophysiologists, was tallied for each patient 

with “day of bleed” marked as day 0.  

DCI “Alarms” 

We defined DCI alarms as the presence of either an EA or high-MCA velocity.  

DCI Classification 

We defined DCI according to an international consensus definition as either: (1) new focal 

neurologic deficits and/or decrease in the Glasgow Coma Scale of at least 2 points, persisting for 

a minimum of one hour, not explained by other causes (e.g. complications of a procedure, 

sedation, spike in intracranial pressure, re-rupture, hydrocephalus, systemic or metabolic 
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abnormalities) by means of clinical assessment, imaging or laboratory data, or (2) the presence of 

cerebral infarction on CT or MRI imaging of the brain, acquired at the discretion of the clinical 

team, that was not present on any neuroimaging done within the first 48 hours following early 

aneurysm occlusion, and not attributable to other causes such as surgical clipping or 

endovascular treatment.14 Although “delayed neurologic deterioration” is a more general term in 

the absence of angiographic or radiologic evidence, we consider the two definitions overlapping. 

The consensus definition more specifically refers to this as “clinical deterioration caused by 

DCI”, which we will abbreviate to DCI for conciseness. 

As previously published7, we adjudicated the presence or absence of DCI using a multi-step 

process of (1) prospective daily structured research coordinator interviews with the clinical team, 

(2) independent medical record review by three of the authors (ESR, MBW, SFZ) blinded to 

cEEG and TCD findings, (3) consensus adjudication in any case of uncertainty or disagreement.  

Data Analysis 

We compared baseline characteristics between DCI and non-DCI groups with two-tailed t-tests 

and Fisher exact tests. We censored longitudinal data once patients developed DCI. We imputed 

missing data for the MCA PSV via mean (linear) imputation.  

We used swimmer plots to visualize the temporal relationship between EAs, high-MCA velocity, 

and DCI for individual patients. We calculated cumulative distribution functions (CDF) for the 

first instance of EA and high-MCA velocity. We used a non-parametric bootstrap with 1000 

replications to estimate 95% confidence intervals. Then, we compared differences in the 

incidence of these events across DCI and non-DCI groups with Kolmogorov-Smirnov tests. 

We used logistic regression and forward stepwise selection to select TCD and cEEG predictors 

of DCI. We treated TCD data in two different ways: (1) as a binary, max carried forward 
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predictor, whether someone had high-MCA velocity (defined as PSV≥200cm/s) on or before 

each day, and (2) as a continuous, max carried forward predictor using the highest PSV values on 

or before each day. We also used cEEG data as a binary max carried forward predictor by 

dichotomizing based on whether a patient had any form of EA present on or before each day. We 

fit a series of logistic regressions using these TCD and cEEG predictors of DCI and selected the 

earliest day that was significantly associated with DCI. Then, we explored the utility of 

combining TCD and cEEG in a multivariate regression model. Finally, we calculated model 

accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value 

(NPV), updated post-test probabilities, and C-statistics. The updated post-test probabilities 

(denoted as “∆PPV” and “∆NPV”) are calculated by subtracting PPV from the study’s DCI 

prevalence, and subtracting NPV from the study’s non-DCI prevalence, respectively. The C-

statistic is equal to the area underneath the Receiver Operator Characteristic (ROC) curve. The 

closer the C-statistic is to 1, the better the model performance. These metrics were calculated 

through leave-one-out cross-validation (LOO-CV). LOO-CV fits a model on all but one patient 

at a time, and the model predicts the outcome of the observation left out. This process is done 

iteratively then pooled to compare the actual outcomes to calculate model performance metrics. 

We also reported these metrics based on the threshold defined by the Youden index, 

���(�����	�
�	� + ��������	� − 1), for DCI prediction. For sensitivity analysis, we 

compared model prediction for early DCI and late DCI. We defined “early” DCI as any DCI 

event occurring on or prior to the median DCI date of our cohort.    

We used group-based trajectory modeling (GBTM) to describe the evolution of TCD and cEEG 

over time and test the association of trajectory group membership with DCI. GBTM is a finite 

mixture model that assumes a population is composed of a specified number of subgroups that 

follow distinct trajectories of one or more repeated measures over time, in this case, MCA PSV 

and EA. Rather than assuming individuals’ group membership a priori, GBTM probabilistically 
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gathers individuals into statistically meaningful subgroups. After each sequential observation, 

individuals’ posterior probability of membership in each trajectory group is updated based on 

full available data. These posterior probabilities can then enter into predictive models such as 

logistic regression to test the association of trajectory group membership with outcome17–20. 

We included data from the first ten days after SAH for each patient in GBTMs. We jointly 

modeled MCA PSV using a beta distribution and EA using a binomial distribution. To select the 

optimal number of trajectory groups, we compared the Bayesian Information Criteria (BIC) for 

each of the models that we fitted. We identified an inflection point that was the best balance 

between model fit and parsimony. We used LOO-CV to calculate the posterior probability of 

group membership for each patient on each day. We then entered these posteriors into adjusted 

outcome models to predict DCI. We assessed model performance by calculating model accuracy, 

sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), updated 

post-test probabilities, and C-statistics, again using the threshold defined by the Youden index. 

For the best model, we performed sensitivity analysis by reporting model performance for early 

and late DCI events.   

We also modeled time-to-DCI using a survival regression model with binary TCD, EEG, and 

demographic variables as features. To assess performance for each of these survival regression 

models, we used LOO-CV and reported the cumulative sensitivity, dynamic specificity, and C-

statistics at each time point.  

Statistical analysis was done using R (The R Foundation), and GBTM analysis was done using 

the Traj package in STATA (StataCorp). Significance was determined based on α=0.05. 

We attempted to address sources of bias via prospective identification of patients and 

adjudication of DCI classification. There is a risk of selection bias in the inclusion criteria, but it 

is clinically justified since rates of DCI is higher in high-grade SAH patients. 
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Data Availability 

The data from this study are available from the corresponding author on request. 

 

Results 

Cohort Composition 

227 patients were screened, and 107 were confirmed eligible and included in the study. No 

patient was lost to follow-up given the short timeline of DCI development. Of the 107, 56 

(52.3%) experienced DCI. The median day of DCI was 6 (Interquartile Range=[5, 9]). DCI most 

commonly occurred on days 5 (10/56, 17.86%) and 9 (8/56, 14.29%) (Figure 1A). The mean age 

was 56.5 (SD±14.17), and 75 (70.1%) patients were female. EA and high-MCA velocity 

incidences peaked on day 3 for the DCI group (Figure 1B-C). A table of the variables considered 

in our analysis can be found in Table 1. 

High-MCA velocity and presence of EAs precede DCI 

We visualized the time relationship between the first occurrence of high-MCA velocity, EA, and 

DCI using swimmer plots (Figure 2A-B). The plot shows that 53/56 (94.64%) DCI patients 

experienced at least one DCI alarm before their DCI event, compared with 42/51 (82.35%) of 

non-DCI patients (p=0.08). 

We created cumulative plots to visualize and compare the first instances of EA and high-MCA 

velocity in the DCI and non-DCI groups. The timing at which the first instance of EA occurs 

differed in the DCI vs. non-DCI groups (Kolmogorov-Smirnov test, p<0.01), with the separation 
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in the 95% confidence interval occurring on day 5. There was no significant difference in the 

first instance of high-MCA velocities between the DCI and non-DCI groups (Figure 2C-D). 

For DCI patients who had both DCI alarms (19/56, 33.93%), EA often preceded high-MCA 

velocity (14/19, by a mean of 2.5 days), and both preceded DCI (Figure 2E). When we tested 

each DCI alarm independently and in combination during a patients’ monitoring period to 

predict DCI, we found that using the occurrence of either EA or high-MCA velocity resulted in 

much higher sensitivity (94.64%), but lower specificity (17.65%) and using both EA and high-

MCA velocity resulted in a much higher specificity (82.35%) but lower sensitivity (33.93%) 

compared to using a single alarm type to predict DCI (Figure 1D). Still, these analyses had 

limited performance. 

Logistic Regressions with Single Day EEG and TCD parameters 

To evaluate the time dependence of the DCI alarms, we fit max carried forward logistic 

regressions using continuous TCD velocities. Then, we fit logistic regressions using binary max 

carried forward predictors of cEEG and TCD. These models thus account for data on or before 

that day. Continuous MCA PSV values were not significantly associated with DCI on any day, 

but high-MCA velocity occurrence on or before day three (p=0.042) was a significant predictor 

of DCI. For cEEG, EA occurrence on or before day three (p<0.01), day five (p=0.028), and day 

six (p=0.028) were significant predictors of DCI. Day four was not significant (p=0.059).  

We combined EA (p=0.007) and high-MCA velocity (p=0.024) occurrence on or before day 

three as independent predictors of DCI in a multivariate regression model. The model using both 

high-MCA velocity and EA presence on or before day 3 (Se=76.09%, Sp=56.82%) outperformed 

the MCA-only (Se=27.45%, Sp=89.36%) and EA-only (Se=66.00%, Sp=61.70%) models in 

terms of sensitivity, but C-statistics remain limited (C=0.5405, 95%CI=0.4141-0.6670).   
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GBTM Outcome Modeling based on final group trajectory membership 

To capture trajectory information over time, we implemented GBTM modeling as detailed in the 

Methods. We first modeled continuous MCA velocities over time and found that a four-subgroup 

GBTM model best fits the data (Figure 3A-B). Although all four subgroups have distinctive 

trajectories from one another (p<0.05), only one group (yellow, high and rapidly increasing PSV, 

17/26 (65.38% DCI)) was significantly associated with DCI (Odds Ratio (OR)=4.84, p=0.02, 

Figure 3B).  

We then modeled EA incidences using GBTM and found that two distinct subgroups best fit the 

data (Figure 3C-D). Patients in group 2 (dark gray, consistently high EA, 37/53 (69.81% DCI)) 

had a higher risk of DCI (OR=5.09, p<0.01) compared to those in group 1 (light gray, decreasing 

EA, 18/53 (33.96% DCI)). Patients assigned to group 1 experienced either no occurrences of EA 

or only early during monitoring.  

We modeled trajectories of EA and MCA PSV jointly through a multivariate-trajectory model. 

This type of GBTM model simultaneously accounts for MCA PSV and EA trajectories when 

determining subgroups, and is thus a distinct model from the ones described previously. The best 

fit multivariate-trajectory GBTM identified four distinct groups when MCA PSV and EA were 

modeled jointly (Figures 4A-C). Using Group 1 (purple, low/stable PSV and EA, 1/13 (7.69% 

DCI)) as a reference group, Group 4 (navy blue, moderate/increasing PSV and high/increasing 

EA, 23/32 (71.87% DCI)) had an increased risk of DCI (OR=23.30, p<0.01). Group 3 (orange, 

high/rapidly increasing PSV, moderate/stable EA, 22/33(66.67% DCI)) also had an increased 

risk of DCI (OR=18.04, p<0.01) compared to Group 1. Group 2 (light green, high/increasing 

PSV and moderate/stable EA, 6/23 (26.09% DCI)) did not have a significantly different risk of 

DCI compared to Group 1, but the incidence of DCI remained low in both groups.  

GBTM Outcome Modeling based on single-day trajectory membership  
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Regressing the final group trajectory membership probabilities with DCI identified the group 

trajectory memberships that were significantly associated with DCI. While this was useful to 

describe a patient’s overall risk for DCI, to predict DCI using these group trajectory 

memberships, we used daily group membership probabilities predicted with LOO-CV and 

regressed them with DCI outcome.  

Daily univariate MCA PSV group trajectory memberships were not significantly associated with 

DCI. Univariate EA trajectory group membership served as a significant predictor of DCI as 

early as day 3 (Se=64%, Sp=62.75%) and peaked on day 5 (Se=73.53%, Sp=52.94%). 

In the multivariate GBTM, group membership served as a significant predictor on days 3 to 7 

(p<0.05). The day 3 multi-trajectory group membership model (Se=85.11%, Sp=48.98%, Figure 

4D) had better sensitivity than the day 3 EA-only trajectory membership model. Model 

performance using group membership on day 5 performed comparably (Se=81.82%, 

Sp=42.86%), but may be more limited in its clinical utility given 12/56 (21.42%) DCI patients 

experienced their DCI event before day 5.  

Inclusion of Clinical Predictors in Logistic Regressions and GBTMs 

We performed logistic regressions with clinical variables as predictors of DCI and found that 

higher Hunt-Hess score at admission (p=0.004; Se=53.57%, Sp=70.59%) and clipping of 

aneurysm (p=0.024; Se=61.11%, Sp=61.7%) were significantly associated with increased risk of 

DCI. A model with only these two clinical variables performed with sensitivity of 79.63% and 

specificity of 57.45%.   

We included these clinical variables in the best performing logistic regression model. A final 

adjusted logistic regression model with the addition of Hunt-Hess score at admission (p=0.016) 

and aneurysm treatment (p=0.013) as independent clinical covariates of DCI along with EA 
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(p=0.006) and high-MCA velocity (p=0.072) on or before day 3 resulted in a model with 88.64% 

sensitivity and 70.73% specificity. 

For GBTM models, the addition of the Hunt-Hess score improved the univariate EA day 3 model 

(Se=72.92%, Sp=72.34%). The addition of data on aneurysm treatment also improved the EA 

day 3 trajectory model in terms of specificity (Se=60.42%, Sp=78.72%), but most notably 

improved model sensitivity in day 6 (Se=92%, Sp=44.68%). The model with all three variables 

(EA day 3 trajectory membership, Hunt-Hess, and aneurysm treatment) had the best performance 

(Se=83.33%, Sp=68.09%). Models using trajectory group information on subsequent days had 

similar performances (Se=80.95%-84.38%, Sp=65.95 from days 4 to 6). 

Inclusion of aneurysm treatment and Hunt-Hess score as clinical variables also improve the day 

3 multivariate-trajectory group membership model (Se=86.67%, Sp=65.22%). This adjusted 

multivariate trajectory model has the best sensitivity on day 6 (Se=87.5%, Sp=60.87%). 

The best logistic regression and GBTM models include both significant clinical variables and 

both monitoring modalities. A summary of these model performances can be found in Table 2, 

and an overview of models in our study can be found in Figure 5. 

Survival Regression Models 

The best survival model used only EA, Hunt-Hess, and aneurysm treatment modality. However, 

model performance prior to day 5 was limited. The best performance (C-statistic) did not occur 

until after 8 days post-SAH (eFigure 1, http://links.lww.com/WNL/B676).  

Sensitivity Analysis 

When we assess our best logistic regression (Day 3 with TCD, cEEG, and clinical variables) in 

early vs. late DCI events, our model is better at predicting DCI events occurring ≤day 6 

(Se=91.30%, Sp=73.17%, C=0.8155 (0.7126-0.9183)) compared to >day 6 (Se=85.71%, 
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Sp=70.73%, C=0.7271 (0.5905-0.8636)). A similar pattern can be found with our best GBTM 

model (Day 3 multivariate trajectory membership and clinical variables) (≤day 6 (Se=95.24%, 

Sp=67.39%, C=0.7857 (0.6787-0.8928) vs >day 6 (Se= 91.67%, Sp=56.52%, C=0.7219 (0.5979-

0.8459)). 

Discussion 

In our study, we show that combining EEG and TCD data improves prediction of DCI over 

either modality alone. Most DCI patients (94.64%) have at least one DCI alarm prior to the DCI 

event. For DCI patients who had both alarms, EA often preceded high-MCA velocity, and both 

preceded DCI. The addition of two clinical variables (Hunt-Hess score at admission and 

aneurysm treatment modality (i.e. surgical clipping or endovascular coiling) further improved 

model performance. 

High-MCA velocity alone at any time during monitoring (up to the day of DCI or 

discontinuation) weakly predicts DCI. Although we tried to analyze TCD velocities as a 

continuous variable, binary max carried forward variable, or with GBTMs, none of these 

approaches improved the univariate model performance. Our best TCD-only model (Se=27.45%, 

Sp=89.36%) had worse sensitivity than what was described in a recent meta-analysis, where  

TCD vasospasm (defined by mean flow velocity ≥ 120cm/s) had an 89% (76-95%) sensitivity 

and 71% (56-81%) specificity for DCI21. This is possibly due to variable definitions of DCI, 

since most studies included in the meta-analysis were published prior to the consensus 

guideline14 or our use of peak rather than mean flow velocities secondary to data availability. It 

is also increasingly recognized that DCI can occur without angiographic or radiologic 

vasospasm, and vice versa3,22. This may be another potential cause for the TCD models’ limited 

performance in our study.  
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Based on our previously published work that EA occurrence is higher in patients with DCI7, we 

more closely investigated the timing of EA as a predictive marker of DCI in this study. In EA-

only logistic regression models, EA was a significant predictor of DCI as early as day 3 

(Se=66%, Sp=61.70%), and model performance peaked at day 6 (Se=67.65%, Sp=57.14%). EA-

only logistic regression models could detect impending DCI with a higher sensitivity than TCD-

only models, a finding also reported in a previous study by our group8. For many DCI patients, 

EA alarms also preceded TCD velocities crossing the 200cm/s threshold (Figure 2E). Other 

studies have shown similar findings where cEEG changes such as decreasing relative alpha 

variability6 and decreasing alpha and theta power23 preceded detection of vasospasm on TCD.  

The univariate GBTM model for EA identified two trajectory membership groups associated 

with DCI risk. The group with consistent EA occurrence over time is associated with a 5-fold 

increase in odds of DCI (69.81% DCI) compared to the group where EAs occur in the beginning 

but disappear over time (28.30% DCI). This result suggests that individuals who have persistent 

EAs tend to be at an increased risk of DCI compared to individuals with transient early EAs.  

The multivariate GBTM model identified four distinct groups. Groups 1 (purple; low/stable 

MCA PSVs and EA) and 2 (green; high/increasing MCA PSVs and low/decreasing EAs) can be 

considered “benign” trajectories, where most individuals belonging to these groups did not 

experience DCI. This contrasts with group 4 (navy blue; moderate/increasing PSV and 

high/increasing EA), where most individuals assigned to this final group trajectory did 

experience DCI. It seems that EA, rather than MCA PSV, drives the trajectory groups’ 

association with DCI risk. If patients consistently have EAs, as is the case in group 4 (navy blue), 

DCI risk increases. If EAs is decreasing over time, DCI risk does not increase, even in the 

presence of increasing MCA PSV (groups 2, 3, 4).  
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GBTMs performed comparably to logistic regressions for univariate EA and the multivariate 

models. GBTM was recently shown to improve upon the accuracy of logistic regressions in 

models predicting outcomes of patients post-cardiac arrest20. Thus, we expected the trajectory 

information to enhance prediction compared to logistic regressions, but this was not the case. We 

believe this may be because our logistic regression variables are max carried forward and not a 

time-invariant variable, like those used in the 2019 study to compare GBTM and logistic 

regressions. Of note, both GBTM and logistic regression models performed better than single-

day logistic regressions (i.e., time-invariant, not max carried forward. It seems that incorporating 

longitudinal information improves model performance, without a clear benefit of one model over 

another. Practically, there is some benefit of this, as implementing a logistic regression model 

may be easier for clinicians to adapt on a large scale. However, the incorporation of trends 

through GBTM may be important in capturing the changes that occur across the full window of 

DCI occurrence. There are dynamic processes that occur after SAH, including early injury 

factors (e.g., blood-brain barrier disruption, seizures, hydrocephalus, inflammation, and edema) 

that can happen in the first 72 hours post-ictus24–26 as well as late injury factors (e.g., delayed 

cerebral ischemia, delayed hydrocephalus). Looking at trends of both cEEG and TCD may better 

capture these changes. It is possible that future evaluations of specific EA features, beyond 

presence or absence of EA, will prove more robust. Incorporating hourly trends, may also make 

the addition of trends information more valuable.  

After evaluating both TCD-only and EA-only models, we found that DCI prediction improves 

when both modalities are considered together. We believe this is because cEEG and TCD help 

assess different aspects of DCI physiology, namely the metabolic supply-demand mismatch7,24,27. 

TCD allows us to directly evaluate reductions in the supply related to large vessel vasospasm. 

EEG, on the other hand, will enable us to look at markers of excess demand, like EA. By 
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combining these two modalities, we attempt to capture data reflecting two sides of this delicate 

balance and end up with a better prediction algorithm. 

In our study, higher Hunt-Hess score at admission and clipping of aneurysms were significantly 

associated with increased DCI risk and improve logistic regression and multivariate GBTM 

performances. Although the radiographic severity of SAH is also significantly associated with 

DCI risk based on the literature28–33, our data were limited to cEEG monitoring mainly in 

patients with high Fisher Scores (FS 3-4). Thus, we were unable to test it as an independent 

clinical predictor.  

These results highlight the importance of clinical variables on the overall prediction of 

complications like DCI after SAH. Existing literature that uses a combination of clinical and 

radiographic grading scales to predict DCI has fair discrimination, with C-statistics ranging from 

0.63 to 0.7934–36.  

Our best model, a multivariate logistic regression with binarized, max carried forward EA and 

TCD values on day 3, Hunt-Hess, and aneurysm treatment achieved a C-statistic of 0.77 (95%CI: 

0.67-0.88). We note that the other models, which only include radiographic and clinical scales, 

may be easier to implement when cEEG monitoring is not available. While our model needs to 

be externally validated, our results show TCD and cEEG as promising complementary 

monitoring modalities for DCI prediction and can serve as a decision support tool in SAH 

management.   

Our study has a few limitations. We did not have enough TCD measurements available of other 

arteries to calculate measures such as the Lindegaard Ratio or to independently assess the utility 

of ACA and PCA velocities in DCI prediction. The institutional TCD data velocities were 

preferentially recorded as peak systolic velocities rather than mean flow velocities, and while 

these values were internally validated to correlate with other modalities for assessing vasospasm, 
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it remains possible that these measurements contributed to the lower sensitivity in our logistic 

regression models using only TCD information. Mean flow velocity values are better defined in 

the literature, with at least 17 TCD studies using mean flow to evaluate DCI from 1992 to 

201421. A comparison of PSV to MFV performance in other datasets could help elucidate if this 

was the case. While our dataset is relatively large for a DCI study, we did not have an 

independent validation cohort. In the future, larger cohorts across multiple institutions would 

help externally validate our findings. Our study is limited to EEG text reports and the EEG 

reports extracted did not comment on the trends of spectral patterns. Thus, we limited our 

analysis to a daily, binary assessment of cEEG as the presence or absence of EA. There is rich 

information to be gained from cEEG that can be used to enhance the models. Combining spectral 

cEEG measures associated with DCI, such as alpha-delta ratio4,5,37, relative alpha variability5,6, 

and total power37, could improve DCI prediction when used with TCD and should be explored 

further in the future. 

In conclusion, this study provides new evidence that cEEG and TCD together provide an 

improved prediction of DCI. TCD and cEEG provide synergistic information, and models using 

both TCD and cEEG outperformed models using either modality alone. Models that consider the 

timing of DCI alarms, using different approaches, performed better than models that did not. 

Simple clinical variables (Hunt-Hess score and aneurysm treatment modality) further improve 

multimodal performance with the best model using these clinical variables in addition to the 

presence of either EA or high-MCA velocity up to day 3 for DCI prediction.  

Classification of Evidence: This study provides Class II evidence that combined TCD and EEG 

monitoring can identify delayed cerebral ischemia after subarachnoid hemorrhage. 
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Table 1 Univariate Analysis  

 Non-DCI DCI p-value 

N (%) 51 (47.6) 56 (52.34) 
 

HH=4-5 26 (51.0) 42 (75.0) 0.017 

Aneurysm Treatment 
(Coil vs. Clip) 

29 (56.9) 21 (37.5) 0.037 

High MCA on Day 3 5 (9.8) 14 (25.0) 0.043 

EA on Day 3 18 (35.3) 33 (62.3) 0.008 

 

Fisher exact tests of EEG, TCD, Hunt-Hess Score at admission, and aneurysm treatment 

modality (endovascular coiling vs. surgical clipping) show that there is a significant difference 

between each of these variables between the non-DCI and DCI groups in our study. 
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Table 2 Model Performance Including Clinical Variables 

 Accuracy Sensitivity Specificity 
PPV 
(∆PPV) 

NPV 
(∆NPV) C-statistics 

Hunt Hess 
0.6168 
(0.5178-
0.7092) 

0.5357 0.7059 
0.6667 
(+0.1433) 

0.5806 
(-0.1040) 

0.5683 
(0.4559-
0.6807) 

Aneurysm Treatment 
0.6139 
(0.5118-
0.7091) 

0.6111 0.617 
0.6471 
(+0.1237) 

0.5800 
(-0.1034) 

-- 

HH + Aneurysm 
Treatment 

0.6931 
(0.5934-
0.781) 

0.7963 0.5745 
0.6825 
(+0.1591) 

0.7105 
(-0.2339) 

0.6738 
(0.5656-
0.7819) 

High-MCA velocity 
(Day 3) + HH + 
Aneurysm Treatment 

0.7097  

(0.6064-
0.7992) 

 

0.7755 
0.6591 

0.7170 

(+0.1937) 

0.7250 
(-0.2484) 

0.6906  
(0.5804-
0.8008) 

EA (Day 3) + HH + 
Aneurysm Treatment 

0.7692  
(0.6691-
0.8511) 

0.8333 0.6977 
0.7547 
(+0.2314) 

0.7895 
(-0.3129) 

0.7582  
(0.6518-
0.8646) 

High-MCA velocity 
(Day 3) +  EA (Day 
3) + HH 

0.7111 
(0.606-
0.8018) 

0.7826 0.6364 
0.6923 
(+0.1689) 

0.7368 
(-0.2602) 

0.7105 
(0.6009-
0.82) 

High-MCA velocity 
(Day 3) + EA (Day 3) 
+ HH + Aneurysm 
Treatment 

0.8 
(0.6992-
0.879) 

0.8864 0.7073 0.7647 
(+0.2413) 

0.8529 
(-0.3763) 

0.7733 
(0.6665-
0.8801) 

GBTM EA 
Trajectory (Day 3) + 
HH + Aneurysm 
Treatment 

0.7579 
(0.6592-
0.8399) 

0.8333 0.6809 
0.7273 
(+0.2039) 

0.8000 
(-0.3234) 

0.7473 
(0.6425-
0.8521) 

GBTM Multi-
trajectory (Day 3) + 
HH + Aneurysm 
Treatment 

0.7582 
(0.6572-
0.8419) 

0.8667 0.6522 
0.7091 
(+0.1857) 

0.8333 
(-0.3567) 

0.7517 
(0.6459-
0.8575) 

 

The best model (bolded) was a logistic regression that included TCD, EEG, and clinical variables 

as covariates. Model performance metrics were calculated via LOO-CV, and C-statistics were 
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not calculated for models where there is a single binary variable. 
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Figure Legends  

Figure 1 High-MCA Velocity and EA Incidences across DCI and non-DCI groups. Patients 

were monitored with TCD for an average (±SD) of 8.98 (±4.30) days with a mean start day 1.75 

(±1.18) post-SAH. The mean duration of cEEG recordings was 6.32 (±3.22) days with a mean 

start date of 1.94 (±1.30) days post-SAH. (A) Histogram of DCI incidence over the first 15 days 

post-SAH show that peak DCI incidence occurs on day 5 (10/56 DCI patients, 17.86%) and day 

9 (8/56 DCI patients, 14.28%). (B) Histogram of TCD “alarms” over the first 15 days post-SAH 

show that, for DCI patients, peak incidence of TCD alarms occurs on day 3, and peak incidence 

of TCD alarms for non-DCI patients occurs on day 4. The first instance of any TCD alarm 

occurrence within the non-DCI group occurred on day 3. (C) Histogram of EEG “alarms” show 

that a higher proportion of DCI patients get EEG alarms. ETable 1, 

http://links.lww.com/WNL/B676 shows counts of DCI and non-DCI patients tabulated against 

DCI alarms occurring at any time during monitoring (prior to DCI).  
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Figure 2 DCI alarms and time of first occurrence in relation to DCI. For DCI patients (A), 

most receive at least one kind of DCI alarm prior to DCI occurrence. However, many of the non-

DCI patients (B) also receive DCI alarms. Cumulative probability plots of the first EEG alarm 

(C) show that DCI patients receive their first EEG alarm earlier than non-DCI patients, though 

the difference was not significant until day 5. The cumulative probability plots of the first TCD 

alarm was not different between non-DCI and DCI groups (D). Finally, (E) shows that in 

general, EEG alarms precede TCD alarms, and both precede DCI occurrence.  
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Figure 3 Univariate GBTM. In univariate GBTM of MCA (A), only the group experiencing 

high, rapidly increasing peak systolic velocities (yellow, group 4) had a significant increase of 

DCI risk (eTable 2, http://links.lww.com/WNL/B676; OR=4.84, p=0.02). Dots represent average 

MCA value of individuals across the trajectory group, and the solid lines represent the best fit 

line of each MCA subgroup. Thin lines represent individual MCA trajectories over time. 

In univariate GBTM of EA (B), group 2 (dark gray) was associated with a significant increase of 

DCI risk (eTable 3, http://links.lww.com/WNL/B676; OR=5.09, p<0.01) when compared to 

group 1 (light gray).  Opaque dots represent the EA prevalence in the subgroup on each day, and 

the solid lines represent the best fit line of each EA subgroup. The semi-transparent dots centered 

around 0 and 1 represent individuals who did (1) and did not (0) have an EA on that specific day.  
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Figure 4 Multivariate GBTM. Multivariate GBTM identified 4 distinct subgroups of MCA (A) 

and EA (B) when trajectories from both modalities are modelled jointly. Patients in “high risk” 

groups experience high and rapidly increasing MCA PSVs along with moderate EA (orange; 

OR=18.04, p<0.01) and moderate and increasing MCA PSVs and increasing EA (navy blue, 

OR=23.30, p<0.01) (eTable 4, http://links.lww.com/WNL/B676). Using trajectory group 

membership on days 3 and 5 have fair model performance (eTable 5, 

http://links.lww.com/WNL/B676). 
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Figure 5 Model Comparison. A comparison of TCD only (blue), EEG only (green) and 

combined (red) models show that the best models used both modalities and clinical variables. 

GBTM models performed comparably to logistic regressions. 
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